Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegő asymptotics

نویسندگان

  • David Damanik
  • Barry Simon
چکیده

We provide necessary and sufficient conditions for a Jacobi matrix to produce orthogonal polynomials with Szegő asymptotics off the real axis. A key idea is to prove the equivalence of Szegő asymptotics and of Jost asymptotics for the Weyl solution. We also prove L2 convergence of Szegő asymptotics on the spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jost Functions and Jost Solutions for Jacobi Matrices, II. Decay and Analyticity

We present necessary and sufficient conditions on the Jost function for the corresponding Jacobi parameters an − 1 and bn to have a given degree of exponential decay.

متن کامل

Finite Gap Jacobi Matrices, Ii. the Szegő Class

Let e ⊂ R be a finite union of disjoint closed intervals. We study measures whose essential support is e and whose discrete eigenvalues obey a 1/2-power condition. We show that a Szegő condition is equivalent to lim sup a1 · · · an cap(e) > 0 (this includes prior results of Widom and Peherstorfer–Yuditskii). Using Remling’s extension of the Denisov–Rakhmanov theorem and an analysis of Jost func...

متن کامل

Jost Functions and Jost Solutions for Jacobi Matrices, Iii. Asymptotic Series for Decay and Meromorphicity

We show that the parameters an, bn of a Jacobi matrix have a complete asymptotic series

متن کامل

Finite gap Jacobi matrices: An announcement

We consider Jacobi matrices whose essential spectrum is a finite union of closed intervals. We focus on Szegő’s theorem, Jost solutions, and Szegő asymptotics for this situation. This announcement describes talks the authors gave at OPSFA 2007.

متن کامل

ar X iv : 0 90 6 . 16 30 v 1 [ m at h . SP ] 9 J un 2 00 9 FINITE GAP JACOBI MATRICES , II . THE SZEGŐ CLASS

Let e ⊂ R be a finite union of disjoint closed intervals. We study measures whose essential support is e and whose discrete eigenvalues obey a 1/2-power condition. We show that a Szeg˝ o condition is equivalent to lim sup a 1 · · · a n cap(e) n > 0 (this includes prior results of Widom and Peherstorfer–Yuditskii). Using Remling's extension of the Denisov–Rakhmanov theorem and an analysis of Jos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005